
Cookies Overview
and HTTP Proxies

What is a Cookie?

Small piece of data generated by a web server,
stored on the client’s hard drive.
Serves as an add-on to the HTTP specification
(remember, HTTP by itself is stateless.)
Still somewhat controversial, as it enables web
sites to track web users and their habits…

Why use Cookies?

Tracking unique visitors
Creating personalized web sites
Shopping Carts
Tracking users across your site:

e.g. do users that visit your sports news page
also visit your sports store?

Example Cookie Use

Website wants to track the number of unique visitors
who access its site.
If the website checks the HTTP Server logs, it can
determine the number of “hits”, but cannot determine the
number of unique visitors.
That’s because HTTP is stateless. It retains no memory
regarding individual users.
Cookies provide a mechanism to solve this problem.

Tracking Unique Visitors

Step 1: Person A requests the website.
Step 2: Web Server generates a new unique ID.
Step 3: Server returns home page plus a cookie set to
the unique ID.
Step 4: Each time Person A returns to the website, the
browser automatically sends the cookie along with the
GET request.

Cookie Notes
Created in 1994 for Netscape 1.1
Cookies cannot be larger than 4K
No domain (e.g. netscape.com, microsoft.com)
can have more than 20 cookies.
Cookies stay on your machine until:

they automatically expire
they are explicitly deleted

Cookies work the same on all browsers.

Cookie Standards

Version 0 (Netscape):
The original cookie specification
Implemented by all browsers and servers
We will focus on this Version

Version 1
A proposed standard of the Internet Engineering Task
Force (IETF)
Not very widely used (hence, we will stick to Version
0.)

Cookie Anatomy

Version 0 specifies six cookie parts:
Name
Value
Domain
Path
Expires
Secure

Cookie Parts: Name/Value

Name
Name of your cookie (Required)
Cannot contain white spaces, semicolons or
commas.

Value
Value of your cookie (Required)
Cannot contain white spaces, semicolons or
commas.

Cookie Parts: Domain

Only pages from the domain which created a cookie are allowed to
read the cookie.
For example, amazon.com cannot read yahoo.com’s cookies
(imagine the security flaws if this were otherwise!)
By default, the domain is set to the full domain of the web server that
served the web page.

For example, myserver.mydomain.com would automatically set
the domain to .myserver.mydomain.com

Cookie Parts: Domain

Note that domains are always prepended with a dot.
This is a security precaution: all domains must have
at least two periods.

You can however, set a higher level domain
For example, myserver.mydomain.com can set the
domain to .mydomain.com. This way
hisserver.mydomain.com and
herserver.mydomain.com can all access the same
cookies.

No matter what, you cannot set a domain other than your
own.

Cookie Parts: Path

Restricts cookie usage within the site.
By default, the path is set to the path of the page
that created the cookie.
Example: user requests page from
mymall.com/storea. By default, cookie will only
be returned to pages for or under /storea.
If you specify the path to / the cookie will be
returned to all pages (a common practice.)

Cookie Parts: Expires

Specifies when the cookie will expire.
Specified in Greenwich Mean Time (GMT):

Wdy DD-Mon-YYYY HH:MM:SS GMT
If you leave this value blank, browser will delete
the cookie when the user exits the browser.

This is known as a session cookies, as opposed to a
persistent cookie.

Cookie Parts: Secure

The secure flag is designed to encrypt
cookies while in transit.
A secure cookie will only be sent over a
secure connection (such as SSL.)
In other words, if a cookie is set to secure,
and you only connect via a non-secure
connection, the cookie will not be sent.

User-server interaction: cookies

serverclientserver sends “cookie” to
client in response msg
Set-cookie: 1678453

client stores & presents
cookie in later requests
cookie: 1678453

server matches
presented-cookie with
server-stored info

authentication
remembering user
preferences,
previous choices

usual http request msg
usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

cookie-
spectific

action

usual http request msg
cookie: #

usual http response msg

cookie-
spectific

action

Cookie example

telnet www.google.com 80

Trying 216.239.33.99...
Connected to www.google.com.
Escape character is '^]'.

GET /index.html HTTP/1.0

HTTP/1.0 200 OK
Date: Wed, 10 Sep 2003 08:58:55 GMT
Set-Cookie:

PREF=ID=43bd8b0f34818b58:TM=1063184203:LM=1063184203:S
=DDqPgTb56Za88O2y; expires=Sun, 17-Jan-2038 19:14:07 GMT;
path=/; domain=.google.com

.

.

Web Caches (proxy server)
Goal: satisfy client request without involving origin server

origin
serveruser sets browser: Web

accesses via web cache
client sends all http
requests to web cache

if object at web cache,
web cache immediately
returns object in http
response
else requests object
from origin server, then
returns http response to
client

client

Proxy
server

client

http request

http request

http response

http
 response

http request

http
 response

http requesthttp response

origin
server

More about Web caching
Cache acts as both client
and server
Cache can do up-to-date
check using

If-modified-since
HTTP header

Issue: should cache take
risk and deliver cached
object without checking?
Heuristics are used.

Typically cache is installed
by ISP (university,
company, residential ISP)

Why Web caching?
Reduce response time for
client request.
Reduce traffic on an
institution’s access link.
Internet dense with
caches enables “poor”
content providers to
effectively deliver content

Note: Meta tags and http-equiv

HTTP servers use the property name specified by the
http-equiv attribute to create an [RFC822]-style header in
the HTTP response.

The following sample META declaration:
<META http-equiv="Expires" content="Tue, 20 Aug 1996 14:25:27 GMT">

will result in the HTTP header:
Expires: Tue, 20 Aug 1996 14:25:27 GMT

This can be used by caches to determine when to fetch a
fresh copy of the associated document.

References
V22.0480-001, Sana` Odeh , Computer Science Department, New York
University.
Representation and Management of Data on the Internet (67633),
Yehoshua Sagiv, The Hebrew University - Institute of Computer Science.
Java Network Programming and Distributed Computing, Reilly & Reilly.
Computer Networking: A Top-Down Approach Featuring the Internet,
Kurose & Rose, Pearson Addison Wesley.

	Cookies Overview and HTTP Proxies
	What is a Cookie?
	Why use Cookies?
	Example Cookie Use
	Tracking Unique Visitors
	Cookie Notes
	Cookie Standards
	Cookie Anatomy
	Cookie Parts: Name/Value
	Cookie Parts: Domain
	Cookie Parts: Domain
	Cookie Parts: Path
	Cookie Parts: Expires
	Cookie Parts: Secure
	User-server interaction: cookies
	Cookie example
	Web Caches (proxy server)
	More about Web caching
	Note: Meta tags and http-equiv
	References

