
Domain Name System (DNS)

RFC 1034 RFC 1035 http://www.ietf.org

TCP/IP Protocol Suite

DNS: Domain Name System

People: many identifiers:

□ SSN, name, Passport #

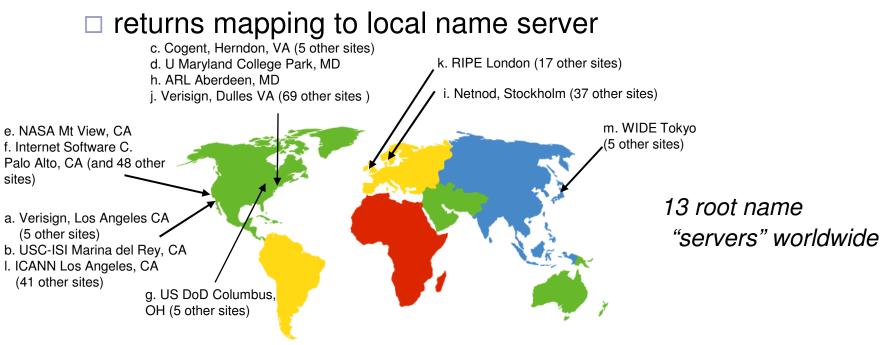
Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g., gaia.cs.umass.edu - used by humans
- <u>Q:</u> map between IP addresses and name ?

Domain Name System:

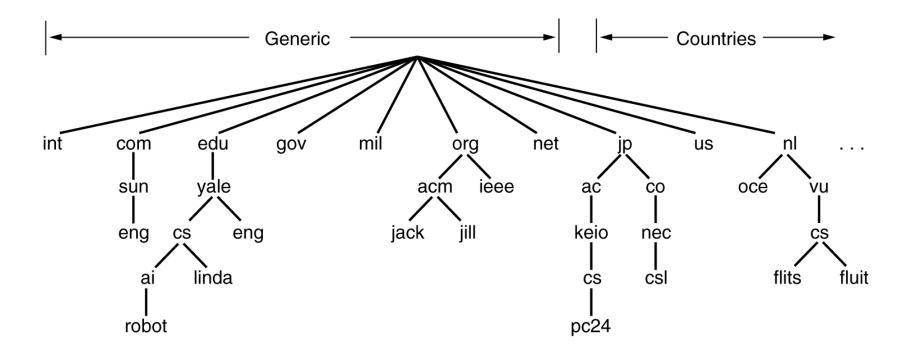
- distributed database implemented in hierarchy of many name servers
- application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation)
 - note: core Internet function implemented as applicationlayer protocol
 - complexity at network's "edge"

DNS name servers

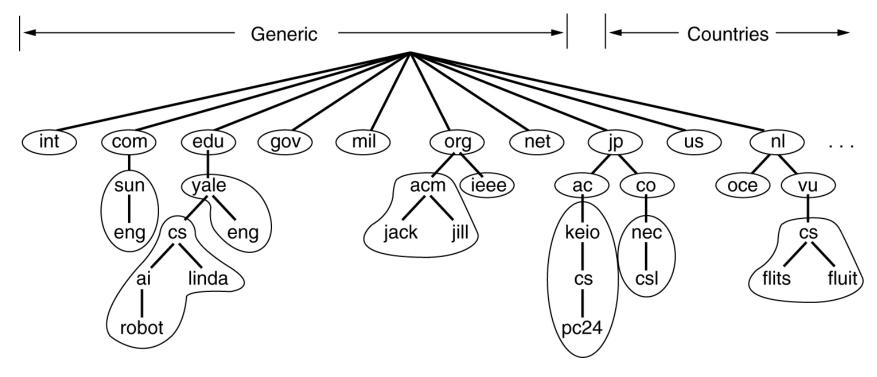

Why not centralize DNS? '

- single point of failure
- traffic volume
- distant centralized database
- maintenance
- doesn't scale!

- no server has all name-to-IP address mappings
- local name servers:
 - each ISP, company has *local* (*default*) name server
 - host DNS query first goes to local name server
- authoritative name server:
 - for a host: stores that host's IP address, name
 - can perform name/address translation for that host's name

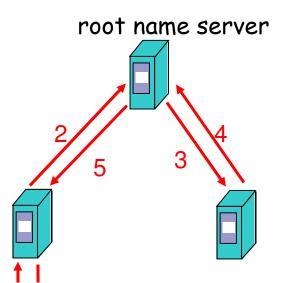

DNS: root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping


The DNS Name Space

A portion of the Internet domain name space showing some top Level Domains (TLDs).

Name Servers

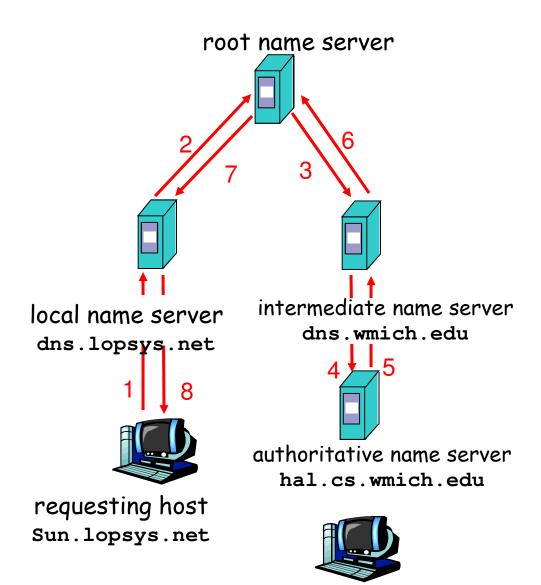

Part of the DNS name space showing the division into zones.

Simple DNS example

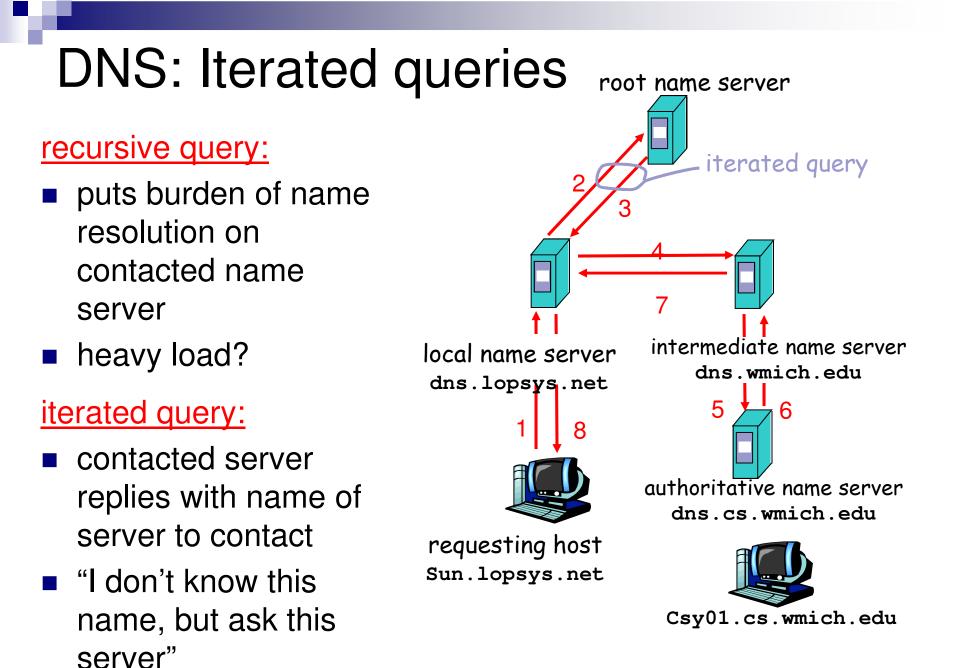
host sun.lopsys.net wants IP address of mail.yahoo.com

- Contacts its local DNS server, dns.lopsys.net
- 2. dns.lopsys.net contacts root name server, if necessary
- 3. root name server contacts loc authoritative name server, ^{dr} dns.yahoo.com, if necessary

local name server authorititive name server dns.lopsys.net dns.yahoo.com



mail.yahoo.com


DNS example

Root name server:

- may not know authoratiative name server
- may know intermediate name server: who to contact to find authoritative name server

Csy01.cs.wmich.edu

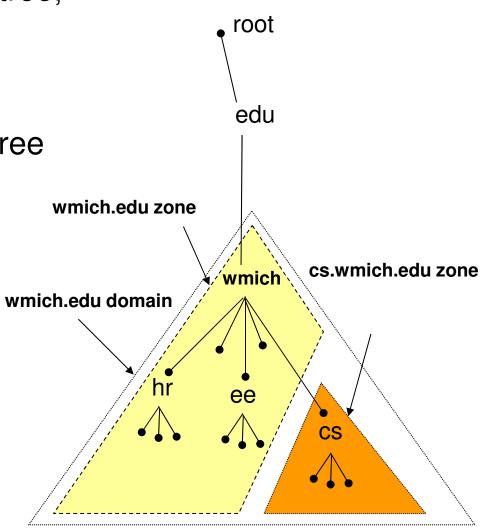
DNS: caching and updating records

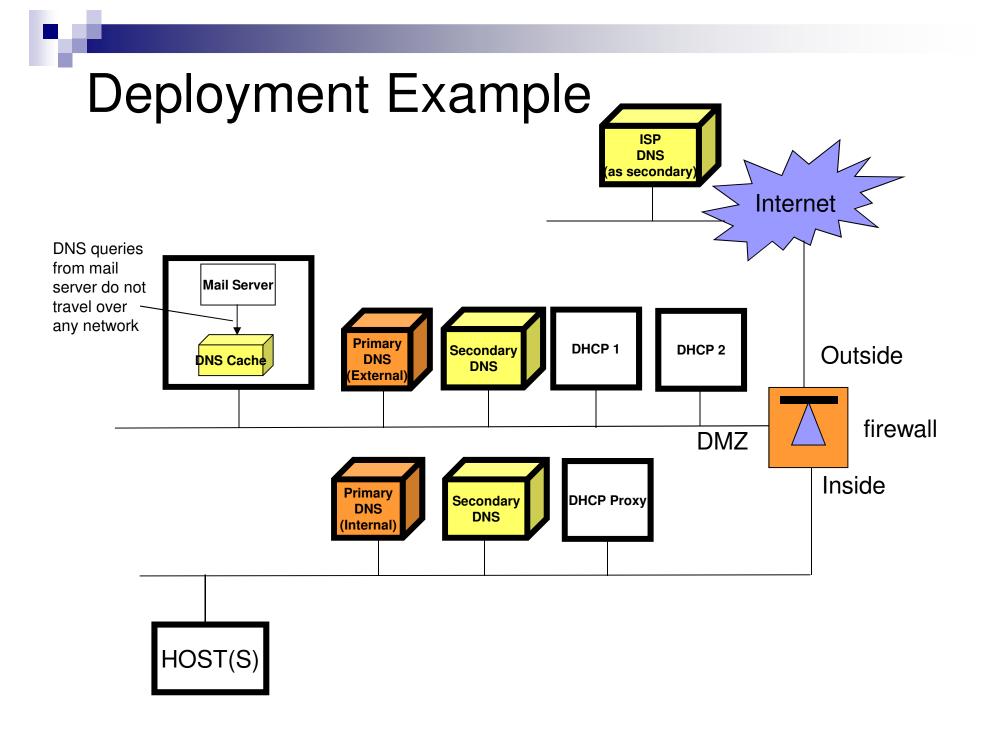
once (any) name server learns mapping, it caches mapping

cache entries timeout (disappear) after some time (TTL usually 24 hours)

 update/notify mechanisms under design by IETF

RFC 2136


http://www.ietf.org/html.charters/dnsind-charter.html


Domains, Zones, Authority, Delegation

•Domain: is a node in the DNS tree, which includes all the nodes (domains) underneath it.

•Zone: is a portion of the DNS tree that a particular DNS server is *authoritative* for.

•A DNS Server may *delegate* authority of its subdomains to other organizations or departments.

DNS Clients (resolver configuration)

- A DNS client is called a resolver.
- A call to getByName() is handled by a resolver (typically part of the client).

UNIX: /etc/resolv.conf

nameserver 141.218.143.12 nameserver 141.218.40.10 nameserver 141.218.1.100 domain cs.wmich.edu

Advanced TCP/IP Settings	? ×				
IP Settings DNS WINS Options					
D <u>N</u> S server addresses, in order of use:					
141.218.143.10					
Add Edit Remove					
The following three settings are applied to all connections with TCP/IP enabled. For resolution of unqualified names:					
Append primary and connection specific DNS suffixes					
Append parent suffixes of the primary DNS suffix					
 Append these DNS suffixes (in order): 					
cs.wmich.edu					
ceas.wmich.edu wmich.edu					
Add Edit Remove					
DNS suffix for this connection: cs.wmich.edu					
<u>Register this connection's addresses in DNS</u>					
\square Use this connection's DNS suffix in DNS registration					
OK Canc	el				

DNS Servers

- The name of the DNS server in UNIX is named
- The configuration file for *named* can be found usually in /etc/named.conf
- The zone files are usually kept in /var/named with all the the zone resource records (e.g., A, PTR, MX, NS, CNAME).
- BIND (Berkeley Internet Name Domain) is an common implementation of DNS server, source code and binaries are freely available <u>http://www.isc.org</u>

DNS records

DNS: distributed db storing resource records

(RR) RR format: (name, value, type, ttl)

- Type=A
 - name is hostname
 - value is IP address

- Type=NS
 - name is domain (e.g. foo.com)
 - value is IP address of authoritative name server for this domain

Type=CNAME

- name is an alias name for some "cannonical" (the real) name
- value is cannonical name
- Type=MX
 - value is hostname of mailserver associated with name

Resource Records

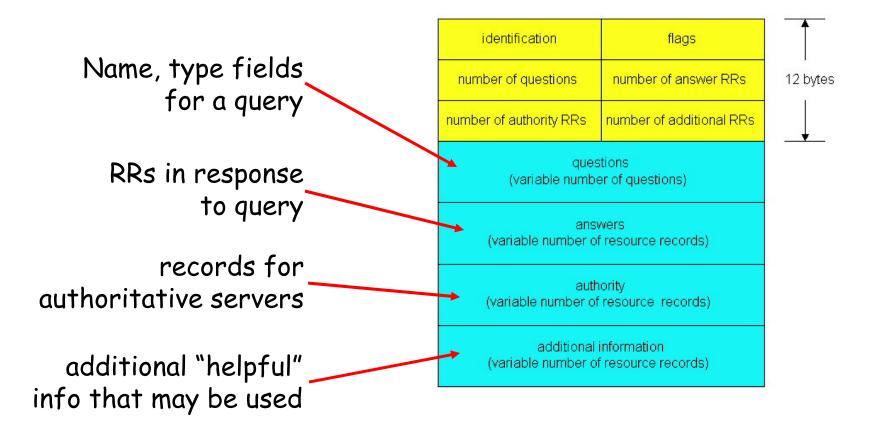
The principal DNS resource records types.

Туре	Meaning Value	
SOA	Start of Authority	Parameters for this zone
А	IP address of a host	32-Bit integer
MX	Mail exchange	Priority, domain willing to accept e-mail
NS	Name Server	Name of a server for this domain
CNAME	Canonical name	Domain name
PTR	Pointer	Alias for an IP address
HINFO	Host description	CPU and OS in ASCII
ТХТ	Text	Uninterpreted ASCII text

Resource Records (2)

; Authoritative data for cs.vu.nl				
cs.vu.nl.	86400	IN	SOA	star boss (952771,7200,7200,2419200,86400)
cs.vu.nl.	86400	IN	TXT	"Divisie Wiskunde en Informatica."
cs.vu.nl.	86400	IN	ТХТ	"Vrije Universiteit Amsterdam."
cs.vu.nl.	86400	IN	MX	1 zephyr.cs.vu.nl.
cs.vu.nl.	86400	IN	MX	2 top.cs.vu.nl.
flits.cs.vu.nl.	86400	IN	HINFO	Sun Unix
flits.cs.vu.nl.	86400	IN	А	130.37.16.112
flits.cs.vu.nl.	86400	IN	А	192.31.231.165
flits.cs.vu.nl.	86400	IN	MX	1 flits.cs.vu.nl.
flits.cs.vu.nl.	86400	IN	MX	2 zephyr.cs.vu.nl.
flits.cs.vu.nl.	86400	IN	MX	3 top.cs.vu.nl.
www.cs.vu.nl.	86400	IN	CNAME	star.cs.vu.nl
ftp.cs.vu.nl.	86400	IN	CNAME	zephyr.cs.vu.nl
rowboat		IN	А	130.37.56.201
		IN	MX	1 rowboat
		IN	MX	2 zephyr
		IN	HINFO	Sun Unix
little-sister		IN	A	130.37.62.23
		IN	HINFO	Mac MacOS
laserjet		IN	А	192.31.231.216
-		IN	HINFO	"HP Laserjet IIISi" Proprietary

A portion of a possible DNS database for *cs.vu.nl.*


DNS protocol, messages DNS protocol : query and reply messages, both with same message format

msg header

- identification: 16 bit # for query, reply to query uses same #
 - flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

	8	E - <u>10 - 10 - 10</u>
identification	flags	Ť
number of questions	number of answer RRs	12 bytes
number of authority RRs	number of additional RRs	
ques (variable numbe		
ans (variable number of		
auth (variable number of		
additional (variable number of		

DNS protocol, messages

nslookup

\$ nslookup -d csy01.cs.wmich.edu

```
Got answer:

HEADER:

opcode = QUERY, id = 6, rcode = NOERROR

header flags: response, auth. answer, want

recursion, recursion avail.

questions = 1, answers = 1, authority records = 4,

additional = 4

QUESTIONS:

csy01.cs.wmich.edu, type = A, class = IN

ANSWERS:

-> csy01.cs.wmich.edu

internet address = 141.218.143.215

ttl = 14400 (4 hours)

AUTHORITY RECORDS:

-> cs.wmich.edu
```

```
nameserver = gumby.cc.wmich.edu
ttl = 14400 (4 hours)
-> cs.wmich.edu
```

```
nameserver = hal.cs.wmich.edu
ttl = 14400 (4 hours)
```

```
ADDITIONAL RECORDS:
```

```
    -> gumby.cc.wmich.edu
internet address = 141.218.20.114
ttl = 3120 (52 mins)
    -> hal.cs.wmich.edu
```

```
internet address = 141.218.143.10
ttl = 14400 (4 hours)
```

```
Name: csy01.cs.wmich.edu
Address: 141.218.143.215
```

\$ nslookup -querytype=MX cnn.com

Server: hal.cs.wmich.edu Address: 141.218.143.10

Non-authoritative answer:

cnn.com MX preference = 10, mail exchanger = atlmail1.turner.com cnn.com MX preference = 10, mail exchanger = atlmail4.turner.com cnn.com MX preference = 20, mail exchanger = atlmail2.turner.com cnn.com MX preference = 30, mail exchanger = nymail1.turner.com cnn.com MX preference = 5, mail exchanger = atlmail3.turner.com

nameserver = a.gtld-servers.net com nameserver = g.gtld-servers.net com nameserver = h.gtld-servers.net com com nameserver = c.gtld-servers.net nameserver = i.gtld-servers.net com nameserver = b.gtld-servers.net com nameserver = d.gtld-servers.net com com nameserver = l.gtld-servers.net nameserver = f.qtld-servers.net com nameserver = j.gtld-servers.net com nameserver = k.qtld-servers.net com com nameserver = e.gtld-servers.net nameserver = m.qtld-servers.net com atlmail1.turner.com internet address = 64.236.240.146 atlmail4.turner.com internet address = 64.236.221.5 atlmail2.turner.com internet address = 64.236.240.147 nymail1.turner.com internet address = 64.236.170.7 nymail1.turner.com internet address = 64.236.170.8 atlmail3.turner.com internet address = 64.236.240.169 a.atld-servers.net internet address = 192.42.93.30 h.gtld-servers.net internet address = 192.54.112.30

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
- create authoritative server type A record for www.networkuptopia.com;

2-22 Utype MX record for networkutopia.com Application Layer

Attacking DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers,
 - allowing root server bypass
- Bombard TLD servers
- ²⁻²³ Dependially more

Redirect attacks

- Man-in-middle
 Intercept queries
- DNS poisoning
 - Send bogus replies to DNS server,
 - which caches

Exploit DNS for DDoS

Send queries with spoofed source address: target IP Application Layer