
P2P File Sharing

P2P file sharing

Example

� Alice runs P2P client
application on her notebook
computer

� Intermittently connects to
Internet; gets new IP address
for each connection

� Asks for “Hey Jude”

� Application displays other
peers that have copy of Hey
Jude.

� Alice chooses one of the peers,
Bob.

� File is copied from Bob’s PC to
Alice’s notebook: HTTP

� While Alice downloads, other
users uploading from Alice.

� Alice’s peer is both a Web client
and a transient Web server.

All peers are servers = highly
scalable!

P2P: centralized directory (Napster’s Approach)

original “Napster” design

1) when peer connects, it

informs central server:

� IP address

� content

2) Alice queries for “Hey

Jude”

3) Alice requests file from

Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

P2P: problems with centralized directory

� Single point of failure

� Performance

bottleneck

� Copyright

infringement

file transfer is

decentralized, but

locating content is

highly decentralized

Query flooding: Gnutella

� fully distributed

� no central server

� public domain

protocol

� many Gnutella clients

implementing protocol

overlay network: graph

� edge between peer X
and Y if there’s a TCP
connection

� all active peers and
edges is overlay net

� Edge is not a physical
link

� Given peer will
typically be connected
with < 10 overlay
neighbors

Gnutella: protocol

Query

QueryHit

Query

QueryHit

File transfer:

HTTP
r Query message
sent over existing TCP
connections

r peers forward
Query message

r QueryHit
sent over
reverse
path

Scalability:

limited scope
flooding

Gnutella: Peer joining

1. Joining peer X must find some other peer in

Gnutella network: use list of candidate peers

2. X sequentially attempts to make TCP with

peers on list until connection setup with Y

3. X sends Ping message to Y; Y forwards Ping

message.

4. All peers receiving Ping message respond with

Pong message

5. X receives many Pong messages. It can then

setup additional TCP connections

Exploiting heterogeneity: KaZaA

� Each peer is either a

group leader or

assigned to a group

leader.

� TCP connection

between peer and its

group leader.

� TCP connections

between some pairs of

group leaders.

� Group leader tracks

the content in all its

children.

ordinary peer

group-leader peer

neighoring relationships
in overlay network

KaZaA: Querying

� Each file has a hash and a descriptor

� Client sends keyword query to its group
leader

� Group leader responds with matches:
�For each match: metadata, hash, IP address

� If group leader forwards query to other
group leaders, they respond with matches

� Client then selects files for downloading
�HTTP requests using hash as identifier sent

to peers holding desired file

Kazaa tricks

� Limitations on simultaneous uploads

� Request queuing

� Incentive priorities

� Parallel downloading

new leecher

BitTorrent – joining a torrent

Peers divided into:

� seeds: have the entire file

� leechers: still downloading

data
request

peer list

metadata file

join

1

2 3

4
seed/leecher

website

tracker

1. obtain the metadata file
2. contact the tracker
3. obtain a peer list (contains seeds & leechers)
4. contact peers from that list for data

!

BitTorrent – exchanging data

I have leecher A

●Verify pieces using hashes

●Download sub-pieces in parallel

● Advertise received pieces to the entire peer list

● Look for the rarest pieces

seed

leecher B

leecher C

Distributed Hash Table (DHT)

� DHT: a distributed P2P database

� database has (key, value) pairs; examples:

�key: ss number; value: human name

�key: movie title; value: IP address

� Distribute the (key, value) pairs over the
(millions of peers)

� a peer queries DHT with key

�DHT returns values that match the key

� peers can also insert (key, value) pairs

Application 2-13

Q: how to assign keys to peers?

� central issue:

�assigning (key, value) pairs to peers.

� basic idea:

�convert each key to an integer

�Assign an integer to each peer

�put (key,value) pair in the peer that is closest
to the key

Application 2-14

DHT identifiers

� assign integer identifier to each peer in range
[0,2n-1] for some n.

�each identifier represented by n bits.

� require each key to be an integer in same range

� to get integer key, hash original key

�e.g., key = hash(“Led Zeppelin IV”)

�this is why its is referred to as a distributed “hash”
table

Application 2-15

Assign keys to peers

� rule: assign key to the peer that has the
closest ID.

� convention in lecture: closest is the
immediate successor of the key.

� e.g., n=4; peers: 1,3,4,5,8,10,12,14;

�key = 13, then successor peer = 14

�key = 15, then successor peer = 1

Application 2-16

1

3

4

5

8
10

12

15

Circular DHT (1)

� each peer only aware of immediate successor
and predecessor.

� “overlay network”
Application 2-17

0001

0011

0100

0101

1000
1010

1100

1111

Who’s responsible
for key 1110 ?

I am

O(N) messages
on avgerage to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Application 2-18

Circular DHT (1)

Circular DHT with shortcuts

� each peer keeps track of IP addresses of predecessor,
successor, short cuts.

� reduced from 6 to 2 messages.
� possible to design shortcuts so O(log N) neighbors,
O(log N) messages in query

1

3

4

5

8
10

12

15

Who’s responsible
for key 1110?

Application 2-19

Peer churn

example: peer 5 abruptly leaves

� peer 4 detects peer 5 departure; makes 8 its immediate
successor; asks 8 who its immediate successor is; makes
8’s immediate successor its second successor.

� what if peer 13 wants to join?

1

3

4

5

8
10

12

15

handling peer churn:
� peers may come and go (churn)
� each peer knows address of its
two successors
� each peer periodically pings its
two successors to check aliveness
� if immediate successor leaves,
choose next successor as new
immediate successor

Application 2-20

P2P Case study: Skype

� inherently P2P: pairs of

users communicate.

� proprietary application-

layer protocol

� inferred via reverse
engineering

� Index maps usernames

to IP addresses;

distributed over SNs

� hierarchical overlay

with SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

Application 21

Peers as relays

� problem when both Alice
and Bob are behind
“NATs”.
� NAT prevents an outside

peer from initiating a call to
insider peer

� solution:
� using Alice’s and Bob’s

SNs, relay is chosen

� each peer initiates session
with relay.

� peers can now
communicate through
NATs via relay

Application 22

