
TCP Sockets

But first ...

Background on Threads

Multithreading

Overview of Multithreading in Java

Java has build-in support for concurrent
programming. This enables you to have
multiple flows of control, represented by
multiple threads within a single program
(process).

A thread is a single sequential flow of control
within a process.
Each thread has a separate execution path, with
its own beginning, program flow, current point of
execution, and end.
They are represented by Thread objects in Java.

Multithreading (Contd.)

Multithreading allows a program to perform
multiple tasks concurrently.

Although threads give the appearance of running
concurrently, in a single- processor system the
interpreter is switching between the threads and
running them one at a time.
Multiprocessor systems may actually run multiple
threads concurrently.
The threads all run in the same memory space,
i.e., they can all access the same memory and call
methods as if they were in a normal single-
threaded process.

Why Threads?
Threads are useful whenever you have
multiple tasks that you want to run
concurrently.

For example, consider a program that
interactively reacts with the user, and that
also needs to download a file over the
networks.

The Thread Class

You create and manipulate threads in Java using instances of the Thread
class.

One way to use threads is to subclass Thread, and override its run() method.
The run() method is the heart of the Thread object. It should contain code to do
whatever work the object needs to do.

class FileDownload extends Thread
{

public void run()
{

// code to download file
}

}

The Thread class in defines in java.lang package.

Creating Threads
Creating the thread is done by creating an instance of the new class.

You then invoke the start() method, inherited from Thread.
start() automatically invokes run(), and then returns control
immediately.
run() will now execute in a separate thread.

FileDownload fd = new FileDownload();
fd.start(); // Returns control immediately
// Do whatever else you want to do
// e.g., continue to interact with user

The new thread runs until its run() method finishes, or until you stop
it explicitly.

The Runnable Interface
You can also use classes that implement the Runnable interface to run code in
separate threads.

The Runnable interface simply declares the run() method. It is also defined in the java.lang
package.

class FileDownload implements Runnable
{

public void run()
{

// Code to download file
}

}
To run the code is a separate thread, create an instance of Thread, with an instance
of the Runnable as an argument to its constructor.
Starting the thread with then cause the Runnable’s run() method to be executed.

Thread t = new Thread(new FileDownload());
t.start(); // Calls FileDownload’s run() method

This allows to have code executed in a thread without needing to subclass
Thread. This is useful if you need to subclass a different class to get other
functionality (e.g., the Applet class).

A Simple Example
// Define a class that extends Thread
class LoopThread extends Thread
{

// Define its run() method to do what you want
public void run()
{

for(int i=1; i <= 20; i++) System.out.println(“I am loopy”);
}

}

public class Looper
{

public static void main(String[] args)
{

// Create an instance of the thread
LoopThread loopy = new LoopThread();

// Start it up
loopy.start();

}
}

TCP Sockets

JAVA - Internet Addresses
java.net.InetAddress class

You get an address by using static methods:

Create InetAddress object representing the local machine
InetAddress myAddress = InetAddress.getLocalHost();

Create InetAddress object representing some remote machine
InetAddress ad = InetAddress.getByName(hostname);

JAVA - Printing Internet Addresses

You get information from an InetAddress
by using methods:

ad.getHostName();
ad.getHostAddress();

JAVA - The InetAddress Class
Handles Internet addresses both as host names and as IP addresses
Static Method getByName returns the IP address of a specified host name as an InetAddress
object
Methods for address/name conversion:

public static InetAddress getByName(String host) throws UnknownHostException
public static InetAddress[] getAllByName(String host) throws UnknownHostException
public static InetAddress getLocalHost() throws UnknownHostException

public boolean isMulticastAddress()
public String getHostName()
public byte[] getAddress()
public String getHostAddress()
public int hashCode()
public boolean equals(Object obj)
public String toString()

The Java.net.Socket Class

Connection is accomplished through the constructors. Each Socket object is
associated with exactly one remote host. To connect to a different host, you
must create a new Socket object.

public Socket(String host, int port) throws UnknownHostException, IOException
public Socket(InetAddress address, int port) throws IOException
public Socket(String host, int port, InetAddress localAddress, int localPort) throws IOException
public Socket(InetAddress address, int port, InetAddress localAddress, int localPort) throws IOException

Sending and receiving data is accomplished with output and input streams.
There are methods to get an input stream for a socket and an output stream for
the socket.

public InputStream getInputStream() throws IOException
public OutputStream getOutputStream() throws IOException

There is a method to close a socket:
public void close() throws IOException

The Java.net.ServerSocket Class

The java.net.ServerSocket class represents a server
socket. It is constructed on a particular port. Then it calls
accept() to listen for incoming connections.

accept() blocks until a connection is detected.
Then accept() returns a java.net.Socket object that is used to
perform the actual communication with the client.

public ServerSocket(int port) throws IOException
public ServerSocket(int port, int backlog) throws IOException
public ServerSocket(int port, int backlog, InetAddress bindAddr) throws IOException

public Socket accept() throws IOException [BLOCKING]
public void close() throws IOException

TCP Sockets
SERVER:
1. Create a ServerSocket object

ServerSocket servSocket = new ServerSocket(1234);
2. Put the server into a waiting state

Socket link = servSocket.accept(); //BLOCKING

3. Set up input and output streams
4. Send and receive data

out.println(data);
String input = in.readLine();

5. Close the connection
link.close()

Set up input and output streams
Once a socket has connected you send data to
the server via an output stream. You receive data
from the server via an input stream.
Methods getInputStream and getOutputStream of
class Socket:
BufferedReader in =

new BufferedReader(
new InputStreamReader(link.getInputStream()));

PrintWriter out =
new PrintWriter(link.getOutputStream(),true);

TCP Sockets
CLIENT:
1. Establish a connection to the server

Socket link =
new Socket(inetAddress.getLocalHost(), 1234);

2. Set up input and output streams
3. Send and receive data
4. Close the connection

References
Cisco Networking Academy Program (CCNA), Cisco Press.

CSCI-5273 : Computer Networks, Dirk Grunwald, University of Colorado-Boulder

CSCI-4220: Network Programming, Dave Hollinger, Rensselaer Polytechnic Institute.

TCP/IP Illustrated, Volume 1, Stevens.

Java Network Programming and Distributed Computing, Reilly & Reilly.

Computer Networks: A Systems Approach, Peterson & Davie.

http://www.firewall.cx

http://www.javasoft.com

