
Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-
oriented transport:
TCP

segment structure

reliable data transfer

flow control

connection
management

3.6 Principles of
congestion control

3.7 TCP congestion
control

TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

initialize TCP variables:

seq. #s

buffers, flow control info
(e.g. RcvWindow)

client: connection initiator
Socket clientSocket = new
Socket("hostname","port

number");

server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

specifies initial seq #

no data

Step 2: server host receives SYN,
replies with SYNACK segment

server allocates buffers

specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Three-Way Handshake

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close
();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection,
sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server, receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous
FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed
ti

m
ed

 w
ai

t

closed

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure

reliable data transfer

flow control

connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Principles of Congestion Control

Congestion:
informally: “too many sources sending too much
data too fast for network to handle”

different from flow control!

manifestations:

lost packets (buffer overflow at routers)

long delays (queueing in router buffers)

a top-10 problem!

Causes/costs of congestion: scenario 1

two senders, two
receivers

one router,
infinite buffers

no
retransmission

large delays
when
congested

maximum
achievable
throughput

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

Causes/costs of congestion: scenario 2

one router, finite buffers

sender retransmission of lost packet
unneeded retransmissions: link carries multiple
copies of pkt

finite shared output
link buffers

Host A λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Causes/costs of congestion

Another “cost” of congestion:

when packet dropped, any “upstream
transmission capacity used for that packet
was wasted!

H
o
s
t
A

H
o
s
t
B

λ
o
u

t

Approaches towards congestion control

End-end congestion
control:
no explicit feedback from
network

congestion inferred from
end-system observed
loss, delay

approach taken by TCP

Network-assisted
congestion control:
routers provide feedback
to end systems

single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

explicit rate sender
should send at

Two broad approaches towards congestion
control:

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure

reliable data transfer

flow control

connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

TCP Congestion Control

end-end control (no network
assistance)

sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

Roughly,

CongWin is dynamic, function of
perceived network congestion

How does sender
perceive congestion?

loss event = timeout or
3 duplicate acks

TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
AIMD

slow start

conservative after
timeout events

rate = CongWin
RTT Bytes/sec

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative
decrease: cut
CongWin in half
after loss event

additive increase:
increase CongWin
by 1 MSS every
RTT in the absence
of loss events:
probing

Long-lived TCP connection

TCP Slow Start
When connection
begins, CongWin = 1
MSS

Example: MSS = 500
bytes & RTT = 200
msec

initial rate = 20 kbps

available bandwidth
may be >> MSS/RTT

desirable to quickly
ramp up to
respectable rate

When connection
begins, increase rate
exponentially fast until
first loss event

TCP Slow Start (more)

When connection
begins, increase rate
exponentially until first
loss event:

double CongWin
every RTT

done by incrementing
CongWin for every
ACK received

Summary: initial rate
is slow but ramps up
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments

Refinement
After 3 dup ACKs:

CongWin is cut in half

window then grows
linearly

But after timeout event:
CongWin instead set to
1 MSS;

window then grows
exponentially

to a threshold, then
grows linearly

• 3 dup ACKs indicates
network capable of
delivering some segments
• timeout before 3 dup
ACKs is “more alarming”

Philosophy:

Refinement (more)
Q: When should the

exponential
increase switch to
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout.

Implementation:
Variable Threshold

At loss event, Threshold
is set to 1/2 of CongWin
just before loss event

Summary: TCP Congestion Control

When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Threshold set
to CongWin/2 and CongWin set to Threshold.

When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K
Practically this does not happen in TCP as
connections with lower RTT are able to grab the
available link bandwidth more quickly.

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

Fairness (more)

Fairness and UDP

Multimedia apps often
do not use TCP

do not want rate throttled
by congestion control

Instead use UDP:
pump audio/video at
constant rate, tolerate
packet loss

Research area: TCP
friendly

Fairness and parallel TCP
connections

nothing prevents app from
opening parallel cnctions
between 2 hosts.

Web browsers do this

Example: link of rate R
supporting 9 cnctions;

new app asks for 1 TCP, gets
rate R/10

new app asks for 11 TCPs,
gets R/2 !

TCP Options: Protection Against Wrap Around Sequence

32-bit SequenceNum

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours
Ethernet (10 Mbps) 57 minutes
T3 (45 Mbps) 13 minutes
FDDI (100 Mbps) 6 minutes
STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) 55 seconds
STS-24 (1.2 Gbps) 28 seconds

TCP Options: Keeping the Pipe Full

16-bit AdvertisedWindow

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
STS-3 (155 Mbps) 1.8MB
STS-12 (622 Mbps) 7.4MB
STS-24 (1.2 Gbps) 14.8MB

assuming 100ms RTT

TCP Extensions

Implemented as header options

Store timestamp in outgoing segments

Extend sequence space with 32-bit
timestamp (PAWS)

Shift (scale) advertised window

