"
Chapter 3 outline

m 3.1 Transport-layer m 3.5 Connection-

services oriented transport:
m 3.2 Multiplexing and TCP
demultiplexing segment structure
m 3.3 Connectionless reliable data transfer
transport: UDP flow control
connection

m 3.4 Principles of

_ management
reliable data transfer

m 3.6 Principles of
congestion control

m 3.7 TCP congestion
control

" JE
TCP Connection Management

Recall: TCP sender, receiver Three way handshake:

establish “connection” before _
m initialize TCP variables: SYN segment to server

specifies initial seq #

seq. #s

buffers, flow control info no data

(e.g. RevWindow) Step 2: server host receives SYN,
= client; connection initiator replies with SYNACK segment

Socket clientSocket = new

" .o server allocates buffers
Socket(*"hostname", ""port

specifies server initial seq. #
a server: contacted by client Step 3: client receives SYNACK,

) replies with ACK segment,
Socket connectionSocket = hich ind
welcomeSocket._accept(); which may contain data

number™) ;




Three-Way Handshake

HOST]
A
e

Send SYN
(seq =x)

Receive SYN

(seq =y,
ACK =x + 1)

Send ACK

(ack = y+1) \

HOST
B
&

Receive SYN
(seq =x)

Send SYN

(seq =y,
ACK =x + 1)

Receive ACK
(ack = y+1)

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close

O:;

Step 1. end system
sends TCP FIN control

segment to server

Step 2: receives
FIN, replies with ACK.
Closes connection,
sends FIN.

@ client

close

d wait

Q. time

close

server @

FIN

cK
> close

FN

ACK




TCP Connection Management (cont.)

Step 3: receives FIN,
replies with ACK.

Enters “timed wait” - will
respond with ACK to
received FINs

Step 4. . receives ACK.

Connection closed.

Note: with small modification,
can handle simultaneous
FINSs.

Ale
server [\
e
closin
9 -
cK .
s closing
FIN
-
'S ACk
S
3 closed
£
=
closed

TCP Connection Management (cont)

client application
initiates a TCP connection

CLOSED

wiait 30 seconds

send SYN

SYN_SENT

TIME_WAIT

3

receive FIN
send ACK

receive SYN & ACK
send ACK

h 4
ESTABLISHED

FIN_WAIT_2

client application
initiates close connection

send FIN

receive ACK
send nothing

TCP client
lifecycle

TCP server
lifecycle

CLOSED

server application
creates a listen socket

receive ACK
send nothing

LISTEN

LAST_ACK

receive SYN

send FIN send SYN & ACK

h
SYN_RCVD

CLOSE_WAIT

receive ACK

send nothing
receive FIN

send ACK

ESTABLISHED




" J
Chapter 3 outline

m 3.1 Transport-layer m 3.5 Connection-oriented
services transport: TCP

m 3.2 Multiplexing and segment structure
demultiplexing reliable data transfer

= 3.3 Connectionless flow control
transport: UDP connection management

m 3.6 Principles of
congestion control

m 3.7 TCP congestion
control

m 3.4 Principles of reliable
data transfer

"
Principles of Congestion Control

Congestion:
m informally: “too many sources sending too much
data too fast for to handle”

m different from flow control!
m manifestations:
lost packets (buffer overflow at routers)
long delays (queueing in router buffers)
m a top-10 problem!




Causes/costs of congestion: scenario 1

= two senders, two R gnetsan o
receivers

m one router, 7 ,
infinite buffers

E NO

retransmission
m large delays

Cr2+ — > ; when
j 5 congested
® maximum
* achievable
?& C/2 7\’ C/2
n in throughput

Causes/costs of congestion: scenario 2

m one router, finite buffers

m sender retransmission of lost packet

m unneeded retransmissions: link carries multiple
copies of pkt

Host A A, - Original data Aout
L 4 L
&< i original data, plus
retransmitted data
Host B finite shared output
link buffers




"
Causes/costs of congestion

C/24

kouT

¥
7\'in
Another “cost” of congestion:

m when packet dropped, any “upstream
transmission capacity used for that packet
was wasted!

"
Approaches towards congestion control

End-end congestion Network-assisted
control: congestion control:

m no explicit feedback from = routers provide feedback
network to end systems

m congestion inferred from single bit indicating
end-system observed congestion (SNA,
loss, delay DEChit, TCP/IP ECN,

m approach taken by TCP ATM)

explicit rate sender
should send at




"
Chapter 3 outline

m 3.1 Transport-layer m 3.5 Connection-oriented
services transport: TCP

m 3.2 Multiplexing and segment structure
demultiplexing reliable data transfer

m 3.3 Connectionless flow control
transport: UDP connection management

m 3.6 Principles of
congestion control

m 3.7 TCP congestion
control

m 3.4 Principles of reliable
data transfer

S
TCP Congestion Control

How does sender
perceive congestion?

m |0Ss event = timeout or
3 duplicate acks

m TCP sender reduces

m end-end control (no network
assistance)

m sender limits transmission:
LastByteSent-LastByteAcked

< CongWi _
ongiEn rate (CongWin) after
= Roughly, loss event
rate = C"ﬁ%‘ Bytes/sec | hree mechanisms:
AIMD
m CongWin is dynamic, function of slow start
perceived network congestion conservative after

timeout events




TCP AIMD
multiplicative additive increase:
decrease: cut increase CongWin
CongWin in half by 1 MSS every
after loss event RTT in the absence
“ndow of loss events:

24 Kbytes —

probing

16 Kbytes —]

8 Kbytes —

Long-lived TCP connection

"
TCP Slow Start

= \When connection m \When connection
begins, CongWin = 1 begins, increase rate
MSS exponentially fast until
Example: MSS = 500 first loss event
bytes & RTT = 200
msecC

initial rate = 20 kbps
m available bandwidth
may be >> MSS/RTT

desirable to quickly
ramp up to
respectable rate




TCP Slow Start (more)

m \WWhen connection
begins, increase rate
exponentially until first
loss event:

double CongWin
every RTT

done by incrementing
CongWin for every

ACK received
m Summary: initial rate
Is slow but ramps up
exponentially fast

Host B

one segment

L%
|

Wo segmens

four segments

time

" I
Refinement

m After 3 dup ACKs:
CongWin is cut in half

window then grows
linearly

m But after timeout event:
CongWin instead set to
1 MSS;

window then grows
exponentially

to a threshold, then
grows linearly

—— Philosophy:

* 3 dup ACKs indicates
network capable of
delivering some segments
* timeout before 3 dup
ACKs is "more alarming”




" S
Refinement (more)

Q: When should the
exponential
increase switch to TCP Series 2 Reno
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout. 27

_| Thresheld

Threshold

Transmission round

TCP Series 1 Tahoe

1 T T T T T 1T T 1T T T 1
12 34 5 6 7 B 9101112131415
Transrrission round

Implementation:
m Variable Threshold

m At loss event, Threshold
is set to 1/2 of CongWin
just before loss event

" J
Summary: TCP Congestion Control

m When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

m When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

m When a triple duplicate ACK occurs, Threshold set
to CongWin/2 and CongWin set to Threshold.

m When timeout occurs, Threshold set to CongWin/2
and CongWin is setto 1 MSS.




" JE
TCP Fairness

m Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

m Practically this does not happen in TCP as

connections with lower RTT are able to grab the
available link bandwidth more quickly.

TCP connection 1

l- N
TCP@ bottleneck

router

ion 2 .
conhnection capacity R

S
Fairness (more)

Fairness and UDP Fairness and parallel TCP

= Multimedia apps often connections
do not use TCP m nothing prevents app from
opening parallel cnctions

do not want rate throttled

by congestion control between 2 hosts.
m Instead use UDP: m Web browsers do this
pump audio/video at m Example: link of rate R
packet loss
new app asks for 1 TCP, gets
m Research area: TCP rate R/10
friendly new app asks for 11 TCPs,

gets R/2!




" JJ
TCP Options: Protection Against Wrap Around Sequence

m 32-bit SequenceNum

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

FDDI (100 Mbps) 6 minutes

STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) 55 seconds
STS-24 (1.2 Gbps) 28 seconds

" JJ
TCP Options: Keeping the Pipe Full

m 16-bit AdvertisedWindow

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB

Ethernet (10 Mbps) 122KB

T3 (45 Mbps) 549KB

FDDI (100 Mbps) 1.2MB

STS-3 (155 Mbps) 1.8MB
STS-12 (622 Mbps) | 7.4MB
STS-24 (1.2 Gbps) | 14.8MB

assuming 100ms RTT




" S
TCP Extensions

m Implemented as header options
m Store timestamp in outgoing segments

m Extend sequence space with 32-bit
timestamp (PAWS)

m Shift (scale) advertised window




