Transport Layer

" J
Chapter 3: Transport Layer

Our goals:

m understand m |learn about transport
principles behind layer protocols in the
transport layer Internet:
services: UDP: connectionless

multiplexing/demult transport

iplexing TCP: connection-
reliable data oriented transport
transfer TCP congestion control
flow control

congestion control

"
Chapter 3 outline

m 3.1 Transport-layer m 3.5 Connection-

services oriented transport:
m 3.2 Multiplexing and TCP
demultiplexing 1 segment structure
m 3.3 Connectionless 1 reliable data transfer

transport: UDP o flow control

. 1 connection
m 3.4 Principles of

. management
reliable data transfer .
m 3.6 Principles of

congestion control

m 3.7 TCP congestion
control

" N
Transport services and protocols

m provide logical communication
between app processes '
running on different hosts preaT

. hysical
m transport protocols run in end e
systems

71 send side: breaks app
messages into segments,
passes to network layer

1 rcv side: reassembles ,
segments into messages, i
passes to app layer -

m more than one transport
protocol available to apps

O Internet: TCP and UDP

transport

| data link |

" NN

Transport vs. network layer

m network layer: logical
communication
between hosts

m (ransport layer: logical
communication
between processes

1 relies on, enhances,
network layer services

B
Internet transport-layer protocols

m reliable, in-order delivery
(TCP)
] congestion control _ o]
71 flow control
1 connection setup

m unreliable, unordered
delivery: UDP
1 no-frills extension of “best-

transport

| data link |

”
effOI’t IP) transport

m services not available:
1 delay guarantees
1 bandwidth guarantees

"
Chapter 3 outline

m 3.1 Transport-layer ~ ® 3.5 Connection-

services oriented transport:
m 3.2 Multiplexing and TCP
demultiplexing segment structure
reliable data transfer

m 3.3 Connectionless flow control
transport: UDP i
connection

m 3.4 Principles of management

reliable data transfer 4 ¢ Principles of

congestion control

m 3.7 TCP congestion
control

" S
Multiplexing/demultiplexing

- Demultiplexing at rcv host: — Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
Yo correct socket

[] =socket O = process

application 5 P1) application @ @ application

transport transport transport
network network network
link link link
physical physical physical

How demultiplexing works

m host receives IP datagrams

each datagram has source — 32 bits

IP address, destination IP
address

source port #| dest port #

each datagram carries 1
transport-layer segment

other header fields

each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

m host uses IP addresses & port

application
data
(message)

numbers to direct segment to
appropriate socket

TCP/UDP segment format

Connectionless demultiplexing

m Create sockets with port

numbers:

DatagramSocket mySocketl = new
DatagramSocket(99111);

DatagramSocket mySocket?2
DatagramSocket(99222);

m UDP socket identified by
two-tuple:

newg

(dest IP address, dest port number)

When host receives UDP
segment:

checks destination port
number in segment

directs UDP segment to

socket with that port number
IP datagrams with
different source IP
addresses and/or source
port numbers directed to
same socket

Connectionless demux (cont)

DatagramSocket serverSocket = new

DatagramSocket(6428):

SP: 6428

SP: 6428

DP: 9157

DP: 5775

SP: 9157

SP: 5775

DP: 6428

SP provides “return address”

DP: 6428

Connection-oriented demux

m TCP socket identified
by 4-tuple:
source IP address
source port number
dest IP address
dest port number

m recv host uses all
four values to direct
segment to
appropriate socket

m Server host may
support many
simultaneous TCP
sockets:

each socket identified
by its own 4-tuple

m Web servers have
different sockets for
each connecting client

non-persistent HTTP
will have different
socket for each request

" A
Connection-oriented demux
(cont)

DD
SP: 5775
DP: 80
S-IP: B
D-IP:C
<
SP: 9157 SP: 9157
DP: 80 DP: 80
S-IP: A S-IP: B
D-IP:C D-IP:C

" JE
Connection-oriented demux:
Threaded Web Server

——
1 1 I H
SP: 5775
DP: 80
S-IP: B
D-IP:C
<
SP: 9157 SP: 9157
DP: 80 DP: 80
S-IP: A S-IP: B
D-IP:C D-IP:C

" S
Chapter 3 outline

m 3.1 Transport-layer
services

m 3.2 Multiplexing and
demultiplexing

m 3.3 Connectionless
transport: UDP

m 3.4 Principles of
reliable data transfer

m 3.5 Connection-
oriented transport:
TCP

segment structure
reliable data transfer
flow control
connection
management

m 3.6 Principles of
congestion control

m 3.7 TCP congestion
control

UDP: User Datagram Protocol [RFC 768]

m “no frills,” “bare bones”
Internet transport protocol

m “pest effort” service, UDP
segments may be:

lost
delivered out of order to
app

m connectionless:

no handshaking between
UDP sender, receiver

each UDP segment
handled independently of
others

Why is there a UDP?

® NO connection establishment
(which can add delay)

m simple: no connection state
at sender, receiver

m small segment header

m no congestion control: UDP
can blast away as fast as
desired

"
UDP: more

m often used for

streaming multimedia —— 32 bits
apps Length, in |Source port #| dest port #
loss tolerant bytes of UDP [~length checksum
. segment,
rate sensitive including
m other UDP uses header
DNS Application
SNMP data
, (message)
m reliable transfer over

UDP: add reliability at
application layer UDP segment format

application-specific
error recovery!

" S
UDP checksum

Goal: detect “errors” (e.qg., flipped bits) in
transmitted segment

Sender: Receiver:

m treat segment contents m compute checksum of
as sequence of 16-bit received segment
integers m check if computed

m checksum: addition (1's checksum equals
complement sum) of checksum field value:
segment contents NO - error detected

m sender puts checksum YES - no error
value into UDP detected. But maybe
checksum field errors nonetheless?

More later

" J
Internet Checksum Example
m Note

When adding numbers, a carryout from the
most significant bit needs to be added to
the result

m Example: add two 16-bit integers

11100110011 00110
1101010101 010101

wraparound@lOll101110111011

sum 1011101110111 100
checksum 0100010001 00O0O011

